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min ,m (t”, s) = E(m+l) tt** T*) (2.11) 
W*, t, x., e*(.)) 

that t* > to and u* (t) = 2 almost everywhere on[t,, t*], 4 (t*)~ G (t*, t,, z*, v*(.)). 

But in this case P (t*) > - z@ (t+), cO(t*, $(t*)) < cg (t*, z*) and (see (2.11) ) we have 

&cm+l) (t*, z*) < cs (t*, z*) which contradicts the assumption. Thus (see (2.9)) we have 

proven that 
E m+r = {It, 2) : (t, 4 E A*, I z I > ‘Lm+l t*- Q> 

Taking into account (2.6) and (2.7) as well as Lemmas 2 and 3, we can show that the 

following theorem holds. 

Theorem. Sets EIr, k es No and E, are defined by the conditions 

Ek = {(t, x) : (t, xf E A,, 1 Z@T 1 > ah (i- t)} 

E, = S = ((1, 2): (t, 2) E [O, 1) x R’ Izj < I-- I) 

The author thanks N. N. Krasovskii for constant attention and valuable advice. 
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The theorem on existence of the Liapunov functionals and the theorem on sta- 
bility in first approximation for a stochastic differential equation with afteref- 
fect are proved. 

The suggestion of the replacement of Liapunov fimotions by functionals [l] 
in the investigation of the stability of ordinary differential equations with lag, 
has been widely utilized in dealing with determinate systems, as well as in the 
case of linear and nonlinear stochastic systems (see, e. g. [2 - 111) , Results 
concerning the stability in the first approximation were obtained for stochastic 
systems in [12 - X3] and others. Use of Liapunov functionals for the differential 
equations with aftereffect was first encountered in Cl, 19, 201 where the inver- 
sion theorems were proved and conditions for the stability in first approximation 
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were obtained. 
Below a stochastic differential equation with aftereffect is investigated where 

the random perturbations represent an arbitrary process with independent incre- 

ments. 

Let (0, u, P) be the basic stochastic space and {ft, t > 0) a monotonously nonde- 
creasing family of a-algebras ft C o ; let also et be a family of operators defined 

by the relation O,%(S) = % (t + s), where s < 0, t > 0 and E (t) is an n-dimensional 
random process defined on (--03, co), ft -measurable when t > 0 and j,, -measurable 

when t < 0; let also w (t) = (wr(t), . . ., wN (t)) be an N-dimensional Wiener process, 

v” (t, A) a centered Poisson’s measure with the parameter fll (A), the process w (t) and 

the measure v” (t, A) independent of each other and fi -measurable when t > 0. 
Let us consider the following stochastic differential equation: 

dE (t) = a (t, e,e) dt + 5 b, (t, f3&)dwr (t) -t 1 C (U; L w) @ (dtv d”) (1) 
r=1 

oOE= 'PO 

in which a (t, cp), b, (t, cp) and c (u; t, cp) are vector fimctionals with values in R” de- 

fined for t > 0, u E Rn and cp C Hs, Ho is the set of functions cp (s) (s Q 0) with va- 
lues in Rn, which have left bounds with probability one, are continuous to the right when 

s < 0 and to the left when s = 0, and such that 

sup~0MIcp(s)12<co, a@, O)~b,(t, O)EC(U; t, O)~O 

ia(t, ‘~)IP~~\~(--r)I~dr~(t,~) 
0 

(2) 

I c (11: t, cp) I2 d [ I cp’(-- z) I2 dr, (u; t, z) 
0 

rl(k z) = i rlr (4 ~1, 
r=1 

r2 (L ~5) = 1 rz (u; t, z) lI (au) 

su~ta r dri (t. 7) < 00 (i = 0, 1, 2) 

(d is the sign of different&on in the last argument), 
Equations of this type were studied in a number of papers (e. g. [21, 221) and the con- 

ditions of existence and uniqueness of their solutions obtained. We shall therefore assume 

these conditions to hold. The nonnegative functional V(t, cp) on [O, co) x H, is such that 

V (1, 0) E 0 and lim ,,,MV (t,C+Q = 0, provided that we call limt,,M 1% (t) p = 0 

(p > 01 the Fp-functionai. 
We also call the function r (s, z) (S > 0, z > 0) a nondecreasing function in z uni- 

formly integrable if 00 t 

aup s s 
dr (s + z, z) ds < 00 

0 t--r 

and if for any g > 0 we can find T such that 
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al 1 . 2 

sup s s dr(s+z,z)ds<e 

T t---s 

Here and in what follows, the operation sup is taken over all t > 0. 
Note. Using the Ito formula [22] and conditions (2) we can show that the function 

M I E (t) 1” satisfies the Lipschitz condition. Since a function integrable on [O, 00) and 
satisfying the Lipschitz condition tends to zero at infinity, therefore from the condition 

m 

s 
M 15 (t) I2 dt < CQ (3) 

0 

it follows that lim,,, M 1% (t)12 = 0. 

Theorem 1. Let the conditions (2) and (3) hold and the functions rt. (t, z) (i = 0, 

1, 2) be uniformly integrable. Then an F,-functional v (t, cp) exists such that 

MV (t, 6,%) > k,M I % (0 I a 

MV (t, f&k) - MV (0, cpo) < - k, s M I 4 (s)P ds 

0 

Pro of . The conditions of Theorem 1 are satisfied by the functional 

VP, ~~5)=IS(t)12+r~lS(t+s)lzds+~ i Ic(s)12( i dri(s++,T)) ds 
0 0 t--r Lo 

r > 2 1/F, + rl + r2 
Q) 

’ ri = sup 
s 

dri (t + z, z) (i = 0, 1, 2) 
0 

since we can apply to it the Ito integro-differential operator L [22], and 

LV (t, et%) d - 0. -2 1/G - ~1 - r2) I 5 (d I 2 

The relation (3) and uniform integrability of the functions ri (t, z) (i = 0, 1, 2) imply 
that it is also an p2 -functional. 

Theorem 2. Let a positive definite (i.e. V (t, cp) > k 1 cp (0) la, k > 0, a > 0) 
F, -functional V (t, cp) exist such that 

MV (0, cpo) < cx~ 

M{V(t, 6,E)/f,)- V(S, 9,F)~-kh_M{(~(T)le/fl}dS h->O,t>s>O 
s 

where % (s) is a solution and ‘pO is the initial condition of Eq. (1). Then 

P {limt_,% (t) = 0} = 1 (4) 

Proof, Evidently V (r, 0&J is a nonnegative supermartingale, consequently, lim v (t, 
8t E) exists with probability one [IS] and Mlim V (t, et%) = lim MV (t, e,%) (t - m). 
The function M I E (t) ) 2 is integrable on [0, 00) and (see note) satisfies the Lipschitz 

condition, therefore lim M 1 E (t) 1% = 0. Since V (t, cp) is an F, -functional, we also have 
lim MV (t, e,%) = 0. From all this it follows that P{limV (t. Or%) = 0) = 1.The rela- 
tion (4) now follows from the positive definiteness of V (t, 0) . 

Corollary. Let the conditions of Theorem 1 hold. Then the solution of (1) satisfies 
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the condition (4). 
To prove it we observe that the conditions of Theorem 1 ensure the existence of a 

functional satisfying the conditions of Theorem 2. We shall show that the solution of(l) 
satisfies the condition (4) even in the case when the conditions of Theorem 1 hold not 

for (l), but for its first order approximation, i. e. for a linear equation with the coeffici- 

ents sufficiently close to the coefficients of (1). 

Let us consider the equation 

dE (t) = 5 dA (t, ~1 E (t 
N- 

-qclt+ 2 \ dB,(h 7)4(t-~)dw,W+ (5) 
0 

+=10 

00 

ss ’ dC(u; t, T)4(t-Tz)Y0(& au) 
0 

the coefficients of which satisfy the conditions (II - II is the operator norm of the matrix) 

Co 

sup 
s 

ncZA(t. z)O<==- ‘9 
0 

aup #ldC(u; 6 +J II(a 
0 

In addition, the functions pf (t, T) (i = 0, 1, 2), where 

d~~(l.~)=UIA(t,r)llSUdA(t,s)U 

0 

dp,,(t,r)=OdB,(t,r),TlldB,(t,s)U 

0 

dp,(u; t, z)=UdC(u; t, r)pSVdC(u; 1, s)U 

0 

N 

dPl@, t) = dP,,k r). dpo(4 ‘5) = s dP,(K 6 z) n Vu) 

are uniformly integrable. 

Let the condition (3) hold for Eq. (5). Then the functional 

Volt* etS)=lS(~)la+P~14(t+r)l~as+~ s le(s)P( &ipi(s+T,r))ds 
0 0 t--s i=o 

P > 2 v/p, + Pl + Pz 
00 

Pi = sup S dPi (t + z. 2) < 00 (i = 0, i, 2) 
0 

is an Fs-functional and &Pa (t, C+t) < - k J & (Q $ (,+ > 01, where L,, is the Ito ope- 

rator corresponding to Eq. (5). 
Let the coefficients of (1) and (5) be connected by the following conditions : 
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(7) 

&I, (h T) = p a,, (L ‘cl. 
r=1 

dq, (h z) = s dq, (u; t, T) l-l (du) 

(P 00 

PO = sup s d90 (k r), 91, = sup s &I, (t, r)* 
0 0 

92 (u) = sup i d9, (u; t, r) 
0 

and the functions qt (t, r) (i = 0, 1, 2) be uniformly integrable. Consider the functional 

N 

dm 6 9 = Go (6 ~1 -I- f (dql (4 r)+h (k r))+ &&r,,(t, r)+dp&, T))+ 
t=1 

s qz (~1 (drz (u; 4 ~1 + dp, (u; t, T)) II (du) 

a0 

m. = sup 
s dm (r + r5. r) 
0 

and estimate the expression 

~~~(t,e~=~dV,(t.e*~)+2(a(f,0*5)-SmdA(t,~)4(t--r),E(~))+ 
0 

5 (IB,(L.e,E)la-ITdBr(t.~)ect-~,)I)+ 
l-4 0 

s.( I c (u; t, 0,E) I2 - ] [ dc (u; t, z) 4 (t -@It) n. (du) + 

0 

Y I E (0 12rdm (t f T. T) - y[l 4 (t - T) i2 dm (t. t) <- [k - y (mo+q0)11&(t)12 

It follows that for f:irly small y ,sucL k, > o can be found that Llr, (t, 6&) < - kl 

I E (t)j2. Moreover,the functional V, (t, cp) is an Fs-functional since V0 (t, cp) is an Fz- 

functional and the function m (t, z) is uniformly integrable. 

Thus we have proved the fol.lowing theorem. 

Theorem 3. Let the coefficients of Eqs. (1) and (5) satisfy the conditions (Z), (6) 
and (7) (the last one at fairly small y). Let also the functions p (t, T), 9 (t, z) and r (t, 
z) be all uniformly integrable and the solution of Eq. (5) satisfy the condition (3). Then 
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the solution of Eq. (1) satisfies the condition (4). 

In conclusion, the author thanks V. B. Kolmanovskii for the interest shown. 
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Unlike the investigations in [l, 21 of the motion of fluid with surface sources 
and sinks of mass (injection and suction), the flow is considered here in thepre- 

sence of uniformly distributed mobile volume sources and sinks in flat and round 

channels. It is shown that far away from the inlet a self-similar solution ofthe 

system of equations of motion can be obtained. The results are applicable, for 
instance, to two-phase (vapor-liquid) streams with condensation or evaporation 

for small volume concentrations of the discrete phase and absence of phaseslip. 

1. The steady axisymmetric flow of fluid in pipes with volume sources or sinks of mass 
which move at the medium velocity, is defined by the system of equations 

$ fr”u,) + -$- (raur) = - ra $ 

where IL% and ZL~ are velocity vector components in the longitudmal and radial directions, 

x is the capacity of volume sources or sinks (x > 0 related to sinks, x < 0 to sourcesj, 
CC = 0 for a flat channel, and a = 1 for a round pipe. 

Let us consider the case of x = const. We shall seek a self-similar solution for sys- 
tem (1.1) far from the tube inlet in a form that satisfies the equation of continuity 


